Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content.
نویسندگان
چکیده
Microalgae can be converted to an energy-dense bio-oil via pyrolysis; however, the relatively high nitrogen content of this bio-oil presents a challenge for its direct use as fuels. Therefore, hydrothermal pretreatment was employed to reduce the N content in Nannochloropsis oculata feedstock by removing proteins without requiring significant energy inputs. The effects of reaction conditions on the yield and composition of pretreated algae were investigated by varying the temperature (150-225°C) and reaction time (10-60 min). Compared with untreated algae, pretreated samples had higher carbon contents and enhanced heating values under all reaction conditions and 6-42% lower N contents at 200-225°C for 30-60 min. The pyrolytic bio-oil from pretreated algae contained less N-containing compounds than that from untreated samples and the bio-oil contained mainly (44.9% GC-MS peak area) long-chain fatty acids (C14-C18) which can be more readily converted into hydrocarbon fuels in the presence of simple catalysts.
منابع مشابه
Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks
Background In this study, a two-step processing method (hydrothermal liquefaction followed by catalytic upgrading) was used to produce upgraded bio-oil. A comprehensive screening analysis of algal species, including four microalgae and four macroalgae, was conducted to bridge the gap between previous accounts of microalgae and macroalgae hydrothermal liquefaction and the upgrading process of th...
متن کاملCo-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
This study investigated co-liquefaction of microalgae (Chlorella pyrenoidosa, CP) and lignocellulosic biomass (Rice husk, RH) in subcritical water for bio-oil production. The effects of liquefaction temperature (200-350°C), residence time (10-90min), solid concentration (10-30wt.%) and mass ratio of CP/RH on product distribution were investigated. The results showed that the highest yield of bi...
متن کاملHydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
Hydrothermal liquefaction (HTL) of Litsea cubeba seed was conducted over different temperature (250-350°C), time (30-120 min), reactor loading (0.5-4.5 g) and Na2CO3 loading (0-10 wt.%). Temperature was the most influential factor affecting the yields of product fractions. The highest bio-oil yield of 56.9 wt.% was achieved at 290°C, 60 min, and reactor loading of 2.5 g. The presence of Na2CO3 ...
متن کاملStability and Activity of Doped Transition Metal Zeolites in the Hydrothermal Processing
This study investigates the stability and activity of HZSM-5 doped with metals such as molybdenum, nickel, copper, and iron under hydrothermal conditions used for the direct liquefaction of microalgae. Catalysts have been prepared by ion-exchange techniques, and MoZSM-5 was also prepared by wet incipient impregnation for comparison. Hydrothermal liquefaction is considered a potential route to c...
متن کاملEfficiency of Microalgae Scenedesmus in the Removal of Nitrogen from Municipal Wastewaters
Background: Due to the high content of nitrogen in the municipal wastewaters, this study evaluated the efficiency of Scenedesmus as an important microalgae in the removal of nitrate from wastewaters and its application as an appropriate culture medium. As algae have high resistance to temperature and pH changes, they can absorb low concentrations of nutrients and need simple low-cost technolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 120 شماره
صفحات -
تاریخ انتشار 2012